设函数 f ( x ) = x 2 + b ln ( x + 1 ) ,其中 b ≠ 0 . (I)当 b > 1 2 时,判断函数 f ( x ) 在定义域上的单调性; (II)求函数 f ( x ) 的极值点; (III)证明对任意的正整数 n ,不等式 ln ( 1 n + 1 ) > 1 n 2 - 1 n 3 都成立.
在△中,角所对的边分别为,已知,,. 1) 求的值; 2) 求的值.
(14分)设函数 (1)当时,求的最大值; (2)令,以其图象上任意一点为切点的切线的斜率恒成立,求实数的取值范围; (3)当时,方程有唯一实数解,求正数的值.
已知椭圆C的中心在坐标原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率为. (1)求椭圆C的标准方程; (2)过椭圆C的右焦点作直线交椭圆C于、两点,交轴于点,若,,求证:.
(14分)设等差数列的前n项和为,已知,. (1)求数列的通项公式; (2)设数列的前n项和为,证明:; (3)是否存在自然数,使得…=2009?若存在,求出的值;若不存在,说明理由.
(14分)某公司在安装宽带网时,购买设备及安装共花费5万元.该公司每年需要向电信部门交纳宽带使用费都是0.5万元,公司用于宽带网的维护费每年各不同,第一年的维护费是0.1万元,以后每年比上一年增加0.1万元. (1)该公司使用宽带网满5年时,累计总费用(含购买设备及安装费用在内)是多少? (2)该公司使用宽带网多少年时,累计总费用的年平均值最小?