已知数列 a n , b n 与函数 f ( x ) , g ( x ) , x ∈ R 满足条件: a n = b n , f ( b n ) = g ( b n + 1 ) .( n ∈ N * )
(I)若 f ( x ) ≥ t x + 1 , t ≠ 0 , t ≠ 2 , g ( x ) = 2 x , f ( b ) ≠ g ( b ) , l i m n → ∞ a n 存在,求 x 的取值范围; (II)若函数 y = f ( x ) 为 R 上的增函数, g ( x ) = f - 1 ( x ) , b = 1 , f ( 1 ) < 1 ,证明对任意 n ∈ N * , l i m n → ∞ a n (用 t 表示).
已知函数,,其中,为自然对数的底数. (Ⅰ)当时,求函数的极小值; (Ⅱ)对,是否存在,使得成立?若存在,求出的取值范围;若不存在,请说明理由;
已知椭圆:经过点,且焦点与双曲线的焦点相同. (Ⅰ)求椭圆的标准方程; (Ⅱ)过点的直线交椭圆于两点,交轴于点,若,,求证:为定值.
在中学生综合素质评价的测评中,分“优、良、不及格”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: (Ⅰ)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为良的概率; (Ⅱ)由表中统计数据填写下边列联表,并判断是否有的把握认为“测评结果优秀与性别有关”.
参考数据与公式:,其中. 临界值表:
已知侧棱垂直于底面的三棱柱的所有棱长都相等,为棱中点.(Ⅰ)证明:; (Ⅱ)在线段上是否存在点,使∥平面,若存在,确定点的位置;若不存在,请说明理由.
(本题满12分)已知A、B、C为的三个内角且向量共线。 (Ⅰ)求角C的大小; (Ⅱ)若的外接圆面积为,求三角形面积最大值.