设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 , A 是椭圆上的一点, A F 2 ⊥ F 1 F 2 ,原点 O 到直线 A F 1 的距离为 1 3 O F 1 . (Ⅰ)证明 a = 2 b ; (Ⅱ)设 Q 1 , Q 2 为椭圆上的两个动点, O Q 1 ⊥ O Q 2 ,过原点 O 作直线 Q 1 Q 2 的垂线 O D ,垂足为 D ,求点 D 的轨迹方程.
已知数列的前n项和为,且 (1)求数列的通项; (2)若数列中,,点P(,)在直线上,记的前n项和为,当时,试比较与的大小
在数列中,已知 (1)证明数列是等比数列 (2) 为数列的前项和,求的表达式
(14分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率.直线:与椭圆C相交于两点, 且 (1)求椭圆C的方程 (2)点P(,0),A、B为椭圆C上的动点,当时,求证:直线AB恒过一个定点.并求出该定点的坐标.
(13分)已知函数图象上一点P(2,)处的切线方程为 (1)求的值(2)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底)
(12分)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E、F分别为A1D1和CC1 的中点. (1)求证:EF∥平面ACD1 (2)求三棱锥E-ACD1的体积与正方体ABCD -A1B1C1D1的体积之比