设椭圆的离心率,右焦点到直线的距离为坐标原点。 (I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值
设,求满足下列条件的实数的值:至少有一个正实数,使函数的定义域和值域相同。
已知关于的不等式:(1)当时,求该不等式的解集; (2)当时,求该不等式的解集.
已知函数。(1)若函数是上的增函数,求实数的取值范围;(2)当时,若不等式在区间上恒成立,求实数的取值范围;(3)对于函数若存在区间,使时,函数的值域也是,则称是上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。
设函数是定义在上的偶函数.若当时,(1)求在上的解析式.(2)请你作出函数的大致图像.(3)当时,若,求的取值范围.(4)若关于的方程有7个不同实数解,求满足的条件.
已知函数.(1)若,求的值;(2)若对于恒成立,求实数的取值范围.