质点在轴上从原点出发向右运动,每次平移一个单位或两个单位,且移动一个单位的概率为,移动2个单位的概率为,设质点运动到点的概率为。(Ⅰ)求和;(Ⅱ)用表示,并证明是等比数列; (Ⅲ)求.
把空间平行六面体与平面上的平行四边形类比,试由“平行四边形对边相等”得出平行六面体的相关性质.
已知函数f(x)=(x∈R),(1)判定函数f(x)的奇偶性;(2)判定函数f(x)在R上的单调性,并证明.
如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则=·;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.
.已知f(x)=(x≠-,a>0),且f(1)=log162,f(-2)=1.(1)求函数f(x)的表达式;(2)已知数列{xn}的项满足xn=[1-f(1)][1-f(2)]…[1-f(n)],试求x1,x2,x3,x4;(3)猜想{xn}的通项.
已知函数f(x)=-(a>0且a≠1),(1)证明:函数y=f(x)的图象关于点对称;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.