(本题满分13 分)已知椭圆的右焦点F 与抛物线y2 =" 4x" 的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F 的直线与椭圆相交于A、B 两点,点C 在右准线l上,BC//x 轴.(1)求椭圆的标准方程,并指出其离心率;(2)求证:线段EF被直线AC 平分.
选修4—5:不等式选讲 设函数. (1)当时,求函数的定义域; (2)若函数的定义域为,试求的取值范围.
选修4—4:坐标系与参数方程 已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是:求直线与曲线相交所成的弦的弦长.
选修4—1:几何证明选讲 如图,,,,四点在同一圆上,的延长线与的延长线交于点,且. (1)证明:; (2)延长到,延长到,使得,证明:,,,四点共圆.
已知函数,. (1)若函数在点处的切线方程为,求的值; (2)若函数有三个不同的极值点,求的值; (3)若存在实数,使对任意的,不等式恒成立,求正整数的最大值.
已知抛物线上点到焦点的距离为4. (1)求抛物线方程; (2)点为准线上任意一点,为抛物线上过焦点的任意一条弦(如图),设直线,,的斜率为,,,问是否存在实数,使得恒成立.若存在,请求出的值;若不存在,请说明理由.