(本小题满分13分)已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分13分)在四棱锥中,,,平面,直线PC与平面ABCD所成角为,. (Ⅰ)求四棱锥的体积;(Ⅱ)若为的中点,求证:平面平面.
(本小题满分13分)设是公比为q的等比数列.(Ⅰ)推导的前n项和公式;(Ⅱ)设q≠1, 证明数列不是等比数列.
(本小题满分12分)已知向量,向量,函数.(Ⅰ)求的最小正周期;(Ⅱ)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和.
(本小题满分12分)已知二次函数.(1)若,且对任意实数均有,求的表达式;(2)在(1)的条件下,当时,设,求g(x)最小值.
(本小题满分12分)已知(1)求的定义域;(2)求使>0成立的x的取值范围.