(本小题满分12分)同时掷两颗骰子,计算:(1)向上的点数之和是5的概率;(2)向上的点数中至少有一个5点或6点的概率.
(本小题共14分)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
本小题共13分)已知等差数列的前项和为,a2=4, S5=35.(Ⅰ)求数列的前项和;(Ⅱ)若数列满足,求数列的前n项和.
对于数列,若满足,则称数列为“0-1数列”.定义变换,将“0-1数列”中原有的每个1都变成0,1,原有的每个0都变成1,0. 例如:1,0,1,则设是“0-1数列”,令.(Ⅰ) 若数列:求数列;(Ⅱ) 若数列共有10项,则数列中连续两项相等的数对至少有多少对?请说明理由;(Ⅲ)若为0,1,记数列中连续两项都是0的数对个数为,.求关于的表达式.
在平面直角坐标系中,设点,以线段为直径的圆经过原点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.
已知函数..(I)当时,求曲线在处的切线方程();(II)求函数的单调区间.