(本小题满分14分)椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.⑴求椭圆方程;⑵求m的取值范围.
(12分)设函数.(1)求的单调区间;(2)证明:.
(12分)若存在实数和,使得函数与对其定义域上的任意实数分别满足:,则称直线为与的“和谐直线”.已知为自然对数的底数);(1)求的极值;(2)函数是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.
已知函数满足,且在上单调递增.(1)求的解析式;(2)若在区间上的最小值为,求实数的值.
已知的反函数为.(1)若函数在区间上单增,求实数的取值范围;(2)若关于的方程在内有两个不相等的实数根,求实数的取值范围.
已知是定义在上的奇函数,当时,,其中是自然对数的底数.(1)求的解析式;(2)求的图象在点处的切线方程.