已知f(x)=2cos2x+sin2x+a (a∈R , a为常数)(Ⅰ) 若x∈R , 求f(x)的单调增区间; (Ⅱ) 若x∈[0, ]时, f(x)的最大值为4, 并求此时f(x)的最小值。
已知数列{}中,,前n项和. (I)求a2,a3以及{}的通项公式; (II)设,求数列{}的前n项和Tn.
如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动. (I)求三棱锥E—PAD的体积; (II)试问当点E在BC的何处时,有EF//平面PAC; (1lI)证明:无论点E在边BC的何处,都有PEAF.
已知a,b,c分别为ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且//. (I)求角A的大小; (II)若a=2,b=2,求ABC的面积.
某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这l6人的数学成绩编成茎叶图,如图所示. (I)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为l22分,试推算这个污损的数据是多少? (Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.
已知函数f(x)=2ax--(2+a)lnx(a≥0) (Ⅰ)当时,求的极值; (Ⅱ)当a>0时,讨论的单调性; (Ⅲ)若对任意的a∈(2,3),x1,x2∈[1,3],恒有成立,求实数m的取值范围。