(本题10分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P和Q(万元),它们与投入的资金(万元)的关系满足公式P=,Q=,现将3万元资金投入经营甲、乙两种商品,设投入乙的资金为x万元,获得的总利润为y(万元)(1)用x表示y,并指出函数的定义城(2)当x为何值时,y有最大值,并求出这个最大值
某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2 000平方米的楼房,经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
设函数f(x)=x3-ax2+3x+5(a>0). (1)已知f(x)在R上是单调函数,求a的取值范围; (2)若a=2,且当x∈[1,2]时,f(x)≤m恒成立,求实数m的取值范围.
(本题满分14分) 已知函数 的图象上。 (1)求数列的通项公式; (2)令求数列 (3)令证明:。
(本题满分14分) 已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交 椭圆于,两点: (Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;
(本题满分14分) 已知是等差数列,其中. (1)求通项公式; (2)数列从哪一项开始小于0; (3)求值.