(本小题满分16分)已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.设f (x)=x2+ax,g(x)=x+b(R),=2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.(1)设,若h (x)为偶函数,求;(2)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为 1 2 ,各局比赛的结束相互独立,第1局甲当裁判. (Ⅰ)求第4局甲当裁判的概率; (Ⅱ)X表示前4局中乙当裁判的次数,求X的数学期望.
如图,四棱锥 P - A B C D 中, ∠ A B C = ∠ B A D = 90 ° , B C = 2 A D , △ P A B 和 △ P A D 都是等边三角形.
(Ⅰ)证明: P B ⊥ C D ; (Ⅱ)求二面角 A - P D - C 的大小.
设 ∆ A B C 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c , a + b + c a - b + c = a c . (Ⅰ)求 B ; (Ⅱ)若 sin A sin C = 3 - 1 4 ,求 C .
等差数列 { a n } 的前 n 项和为 S n .已知 S 3 = a 2 2 ,且 S 1 , S 2 , S 4 成等比数列,求 { a n } 的通项公式.
已知函数 f x = x - a , 其中 a > 1
(I) 当 a = 2 时 , 求不等式 f x ≥ 4 - x - 4 的解集 。
(II) 已知关于 x 的不等式 f 2 x + a - 2 f x ≤ 2 的解集为 x 1 ≤ x ≤ 2 , 求 a 的值 。