(本题满分12分)直线(为参数,为常数且)被以原点为极点,轴的正半轴为极轴,方程为的曲线所截,求截得的弦长.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1)求甲同学至少有4次投中的概率;(2)求乙同学投篮次数的分布列和数学期望.
为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行公共自行车按每车每次的租用时间进行收费,具体收费标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,收费1元;③租用时间为2小时以上且不超过3小时,收费2元;④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.(1)求甲、乙两人所付租车费相同的概率;(2)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E
某超市在节日期间进行有奖促销,凡在该超市购物满400元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就继续摸球.规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次停止摸奖的概率;(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布律和数学期望.
对一批共50件的某电器进行分类检测,其重量(克)统计如下:
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A”型2件(1)从该批电器中任选1件,求其为“B”型的概率;(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.
经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下: 罗非鱼的汞含量(ppm)
《中华人民共和国环境保护法》规定食品的汞含量不得超过ppm. (1)检查人员从这条鱼中,随机抽出条,求条中恰有条汞含量超标的概率; (2)若从这批数量很大的鱼中任选条鱼,记表示抽到的汞含量超标的鱼的条数.以此条鱼的样本数据来估计这批数量很大的鱼的总体数据,求的分布列及数学期望.