(本小题满分14分)如图,有两条相交成的直路,,交点是,甲、乙分别在上,起初甲离O点3 km,乙离O点1 km,后甲沿方向用2 km/h的速度,乙沿方向用4km/h的速度同时步行. 设t小时后甲在上点A处,乙在上点B处.(Ⅰ)求t=1.5时,甲、乙两人之间的距离;(Ⅱ)求t=2时,甲、乙两人之间的距离;(Ⅲ) 当t为何值时,甲、乙两人之间的距离最短?
已知向量,,函数. (Ⅰ)求函数的最小正周期;(Ⅱ)若,求函数的值域。
已知等差数列中,,,数列中,,. (Ⅰ)求数列的通项公式,写出它的前项和; (Ⅱ)求数列的通项公式。
已知函数,数列是公差为d的等差数列,是公比为q()的等比数列.若 (Ⅰ)求数列,的通项公式; (Ⅱ)设数列对任意自然数n均有,求的值; (Ⅲ)试比较与的大小.
若函数, (Ⅰ)当时,求函数的单调增区间; (Ⅱ)函数是否存在极值.
已知椭圆的两个焦点为,点在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)已知点,设点是椭圆上任一点,求的取值范围.