(方案二)如图是一个长方体被削去一部分后的多面体的直观图,它的正视图和侧视图已经画出.(单位:cm).(Ⅰ)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(Ⅱ)(普通高中做)求三棱锥的体积.(示范性高中做)求多面体的体积.
已知函数 f(x)=x-aex(a∈R),x∈R .已知函数 y=f(x) 有两个零点 x 1 , x 2 ,且 x 1 < x 2 . (1)求 a 的取值范围; (2)证明 x 2 x 1 随着 a 的减小而增大; (3)证明 x 1 + x 2 随着 a 的减小而增大.
已知 q 和 n 均为给定的大于1的自然数,设集合 M={0,1,2,…,q-1} ,集合 A={x|x= x 1 + x 2 q+…+ x n q n ﹣1, x i ∈M,i=1,2,…n} .
(Ⅰ)当 q=2,n=3 时,用列举法表示集合 A ;
(Ⅱ)设 s,t∈A , s= a 1 + a 2 q+…+ a n q n ﹣ 1 ,t= b 1 + b 2 q+…+ b n q n ﹣ 1 ,其中 a i , b i ∈M , i=1,2,...,n .证明:若 a n < b n ,则 s<t .
设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点为 F 1 , F 2 ,右顶点为 A ,上顶点为 B .已知 A B = 3 2 F 1 F 2 . (1)求椭圆的离心率; (2)设 P 为椭圆上异于其顶点的一点,以线段 P B 为直径的圆经过点 F 1 ,经过原点 O 的直线 l 与该圆相切,求直线 l 的斜率.
如图,在四棱锥 P-ABCD 中, PA⊥底面ABCD,AD⊥AB,AB∥DC , AD=DC=AP=2 , AB=1 ,点 E 为棱 PC 的中点. (1)证明: BE⊥DC ; (2)求直线 BE 与平面 PBD 所成角的正弦值; (3)若 F 为棱 PC 上一点,满足 BF∧AC ,求二面角 FF-AB-P 的余弦值.
某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率; (2)设 X 为选出的3名同学中女同学的人数,求随机变量 X 的分布列和数学期望.