(本小题13分)如图,四棱锥的底面为正方形,平面,且,,,分别是线段,的中点.⑴求直线和所成角的余弦值;⑵求二面角平面角的余弦值.
(本题满分12分) 如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里,问乙船每小时航行多少海里?
已知数列的通项公式为,数列的前n项和为,且满足 (I)求的通项公式; (II)在中是否存在使得是中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.
是否存在常数,使得函数在闭区间上的最大值为1?若存在,求出对应的值;若不存在,说明理由.
已知定义域为的函数是奇函数。 (Ⅰ)求的值; (Ⅱ)解不等式
为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数), 如图所示,根据图中提供的信息,回答下列问题: (Ⅰ)从药物释放开始,求每立方米空气中的含药量 y(毫克)与时间t(小时)之间的函数关系式? (Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.