(本小题满分10分)选修4-1:几何证明选讲如图,CD是Rt△ABC的斜边AB上的高,E是BC上任意一点,EF⊥AB于F。求证:
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,FC⊥平面ABCD,AE⊥BD,CB=" CD=" CF.(1)求证:BD⊥平面AED;(2)求二面角F—BD—C的正切值.
已知向量(1)当时,求的值; (2)求函数在上的值域.
某网站针对“2014年法定节假日调休安排”展开的问卷调查,提出了A、B、C三种放假方案,调查结果如下:
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持A方案”的人中抽取了6人,求n的值;(2)在“支持B方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.
设函数在上的最大值为().(1)求数列的通项公式;(2)求证:对任何正整数n (n≥2),都有成立;(3)设数列的前n项和为Sn,求证:对任意正整数n,都有成立.
已知A、B为抛物线C:y2 = 4x上的两个动点,点A在第一象限,点B在第四象限l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(1)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(2)设C、D为直线l1、l2与直线x = 4的交点,求面积的最小值.