(本小题满分10分)选修4-1:几何证明选讲如图,CD是Rt△ABC的斜边AB上的高,E是BC上任意一点,EF⊥AB于F。求证:
以下茎叶图记录了甲乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中用x表示 (1)如果x=8,求乙组同学植树棵树的平均数与方差 (2)如果x=9,分别从甲、乙两组中随机选取一名同学,求这两名同学植树总棵数为19的概率 (注:标准差s= )
已知顶点在原点,焦点在x轴上的抛物线过点(1.2) (1)求抛物线的标准方程 (2)直线y=x-4与抛物线相交于AB两点,求证:OA⊥OB
已知命题p:x2+2x-15≤0,命题q:︱x-1︱≤m (m>0),若p是q的必要不充分条件,求实数m的取值范围
已知中心在原点,焦点在x轴的椭圆的离心率为,椭圆上一点P到两个焦点的距离之和为8, (1)求椭圆的方程 (2)求与上述椭圆共焦点,且一条渐近线为y=x的双曲线方程
某高级中学共有学生3000名,各年段男、女学生人数如下表
已知在全校学生中随机抽取1名,抽到高二女生的概率为0.17, (1)问高二年段女生有多少名? 现对各年段采用分层抽样的方法,在全校抽取300名学生,问应在高三年段抽取多少名学生