某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关? (2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名? (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
设数列的前n项和为,已知,,数列是公差为d的等差数列,.(1)求d的值;(2)求数列的通项公式;(3)求证:.
将边长为的正方形和等腰直角三角形按图拼为新的几何图形,中,,连结,若,为中点(Ⅰ)求与所成角的大小;(Ⅱ)若为中点,证明:平面;(Ⅲ)证明:平面平面
某旅游推介活动晚会进行嘉宾现场抽奖活动,抽奖规则是:抽奖盒中装有个大小相同的小球,分别印有“多彩十艺节”和“美丽泉城行”两种标志,摇匀后,参加者每次从盒中同时抽取两个小球,若抽到两个球都印有“多彩十艺节”标志即可获奖.(I)活动开始后,一位参加者问:盒中有几个“多彩十艺节”球?主持人笑说:我只知道从盒中同时抽两球不都是“美丽泉城行”标志的概率是,求抽奖者获奖的概率;(Ⅱ)上面条件下,现有甲、乙、丙、丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.
已知函数.(1)若不等式的解集为,求实数的值;(2)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.