(本小题满分14分)如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中AC=3,AB=5,(Ⅰ)求证: (Ⅱ)求证:AC1//平面CDB1;(Ⅲ)求三棱锥A1—B1CD的体积.
已知函数f(x)=﹣x3+3x2+9x+a.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若f(x)在区间[﹣2,2]上的最大值为20,求它在该区间上的最小值.
已知函数f(x)=x3﹣3x.(1)求函数f(x)在[﹣3,]上的最大值和最小值;(2)过点P(2,﹣6)作曲线y=f(x)的切线,求此切线的方程.
已知函数f1(x)=sinx,且fn+1(x)=fn′(x),其中n∈N*,求f1(x)+f2(x)+…+f100(x)的值.
已知P(﹣1,1),Q(2,4)是曲线y=x2上的两点,求与直线PQ平行且与曲线相切的切线方程.
已知抛物线y=x2,求过点(﹣,﹣2)且与抛物线相切的直线方程.