已知抛物线 C 1 : x 2 + b y = b 2 经过椭圆 C 2 : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的两个焦点.
(1) 求椭圆 C 2 的离心率; (2) 设 Q ( 3 , b ) ,又 M , N 为 C 1 与 C 2 不在 y 轴上的两个交点,若 △ Q M N 的重心在抛物线 C 1 上,求 C 1 和 C 2 的方程.
如图,四棱锥的底面是平行四边形,平面,是中点,是中点.(1)求证:面;(2)若面面,求证:.
已知函数,.(1)求函数的最小值和最小正周期;(2)设的内角、、的对边分别为,,,且,,若,求,的值.
在直角坐标中,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,的极坐标方程为.(Ⅰ)写出的直角坐标方程;直线的直角坐标方程(Ⅱ)为直线上一动点,当到圆心的距离最小时,求点的坐标.
设,其中,曲线在点处的切线与轴相交于点. (1)确定的值; (2)求函数的单调区间与极值.
为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500 ml以上为常喝,体重超过50 kg为肥胖.
已知在这30人中随机抽取1人,抽到肥胖的学生的概率为. (1)请将上面的列联表补充完整. (2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. (3)现从常喝碳酸饮料且肥胖的学生(其中有2名女生)中,抽取2人参加电视节目,则正好抽到1男1女的概率是多少? 参考数据:
参考公式:K2=,其中n=a+b+c+d.