已知函数 f x = a + 1 ln x + a x 2 + 1
(I)讨论函数 f x 的单调性; (II)设 a < - 1 .如果对任意 x 1 , x 2 ∈ 0 , + ∞ , f x 1 - f x 2 ≥ 4 x 1 - x 2 ,求 a 的取值范围。
如图,正方体的棱长为2,E,F,G分别是,的中点.(1)求证:FG//平面;(2)求FG与平面所成的角的正切值.
已知数列及,,.(Ⅰ)求的值,并求数列的通项公式;(Ⅱ)设,求数列的前项和;(Ⅲ)若 对一切正整数恒成立,求实数的取值范围.
某房地产开发商投资810万元建一座写字楼,第一年装修费为10万元,以后每年增加20万元,把写字楼出租,每年收入租金300万元.(Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①纯利润总和最大时,以100万元出售该楼;②年平均利润最大时以460万元出售该楼,问哪种方案盈利更多?
已知函数,(Ⅰ)求函数的最小正周期及单调递增区间;(Ⅱ)在中,三内角,,的对边分别为,已知函数的图象经过点, 成等差数列,且,求的值.
如图,函数y=2sin(x+φ) x∈R , 其中0≤φ≤的图象与y轴交于点(0,1).(Ⅰ)求φ的值;(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求