在数列 a n 中, a 1 = 0 ,且对任意 k ∈ N * , a 2 k - 1 , a 2 k , a 2 k + 1 成等差数列,其公差为 2 k . (Ⅰ)证明 a 4 , a 5 , a 6 成等比数列; (Ⅱ)求数列 a n 的通项公式; (Ⅲ)记 T n = 2 2 a 2 + 3 2 a 3 + ⋯ + n 2 a n ,证明 3 2 < 2 n - T n ≤ 2 n ≥ 2 .
已知函数为常数). (1)求函数的最小正周期;(2)求函数的单调递增区间; (3)若时,的最小值为 – 2 ,求的值.
已知,且,求的值.
求值:
.已知正项数列的首项前项和为,且满足. (Ⅰ)求与 (Ⅱ)从集合取出三个数构成以正整数为公比的递增等比数列,放回后再取出三个数构成以正整数为公比的递增等比数列,相同的数列只取一次,按照上述取法取下去,直到取完所有满足条件的数列为止。求满足上述条件的所有的不同数列的和M.
在中,是角A,B,C的对边,且. (Ⅰ)求角B. (Ⅱ)若的面积且,求.