在数列 a n 中, a 1 = 0 ,且对任意 k ∈ N * , a 2 k - 1 , a 2 k , a 2 k + 1 成等差数列,其公差为 2 k . (Ⅰ)证明 a 4 , a 5 , a 6 成等比数列; (Ⅱ)求数列 a n 的通项公式; (Ⅲ)记 T n = 2 2 a 2 + 3 2 a 3 + ⋯ + n 2 a n ,证明 3 2 < 2 n - T n ≤ 2 n ≥ 2 .
(本小题满分12分)已知函数,对于任意的,恒有.(1)证明:当时,;(2)如果不等式恒成立,求的最小值.
(本小题满分12分)设数列的前项和为,已知(1)设,证明数列是等比数列;(2)求数列的通项公式.
(本小题满分12分)设命题:函数在上单调递减命题:关于不等式对于恒成立如果是真命题,是假命题,求的范围.
(本小题满分12分)在中,,(1)求的值和边的长;(2)设的中点为,求中线的长.
(本小题满分12分) 已知,,比较与的大小.