如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的离心率为 2 2 ,以该椭圆上的点和椭圆的左、右焦点 F 1 , F 2 为顶点的三角形的周长为 4 2 + 1 .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D .
(Ⅰ)求椭圆和双曲线的标准方程; (Ⅱ)设直线 P F 1 、 P F 2 的斜率分别为 k 1 、 k 2 ,证明 k 1 k 2 = 1 ; (Ⅲ)是否存在常数 λ ,使得 A B + C D = λ A B · C D 恒成立?若存在,求 λ 的值;若不存在,请说明理由.
四棱锥底面是平行四边形,面面,,,分别为的中点. (1)求证:; (2)求二面角的余弦值.
若盒中装有同一型号的灯泡共只,其中有只合格品,只次品。 (1) 某工人师傅有放回地连续从该盒中取灯泡次,每次取一只灯泡,求次取到次品的概率; (2) 某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望.
已知函数. (1)求函数的最小正周期和最值; (2)求函数的单调递减区间.
设函数. (1)若时,求处的切线方程; (2)当时,,求的取值范围.
已知,其中,若函数,且函数的图象与直线相邻两公共点间的距离为. (1)求的值; (2)在中.分别是的对边,且,求的面积.