如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的离心率为 2 2 ,以该椭圆上的点和椭圆的左、右焦点 F 1 , F 2 为顶点的三角形的周长为 4 2 + 1 .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D .
(Ⅰ)求椭圆和双曲线的标准方程; (Ⅱ)设直线 P F 1 、 P F 2 的斜率分别为 k 1 、 k 2 ,证明 k 1 k 2 = 1 ; (Ⅲ)是否存在常数 λ ,使得 A B + C D = λ A B · C D 恒成立?若存在,求 λ 的值;若不存在,请说明理由.
已知是R上的奇函数,且当时,,求的解析式。
已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(Ⅰ)若A=B,求a的值;(Ⅱ)若A∩B,A∩C=,求a的值.
已知集合A=,B={x|2<x<10},C={x|x<a},全集为实数集R.(Ⅰ)求A∪B,(CRA)∩B;(Ⅱ)如果A∩C≠φ,求a的取值范围.
已知集合A={x | x+x-6=0},B={x | mx+1=0},若BA,求由实数m所构成的集合M。
【选修4—5:不等式选讲】已知函数.(I)求的取值范围;(II)求不等式≥的解集.