如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的离心率为 2 2 ,以该椭圆上的点和椭圆的左、右焦点 F 1 , F 2 为顶点的三角形的周长为 4 2 + 1 .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D .
(Ⅰ)求椭圆和双曲线的标准方程; (Ⅱ)设直线 P F 1 、 P F 2 的斜率分别为 k 1 、 k 2 ,证明 k 1 k 2 = 1 ; (Ⅲ)是否存在常数 λ ,使得 A B + C D = λ A B · C D 恒成立?若存在,求 λ 的值;若不存在,请说明理由.
如图,在四棱锥中,四边形是平行四边形,,点E是的中点. (1)求证:∥平面; (2)求证:平面平面.
已知两点,. (1)求过、两点的直线方程; (2)求线段的垂直平分线的直线方程; (3)若圆经过、两点且圆心在直线上,求圆的方程.
已知函数,,且点处取得极值. (Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上有解,求的取值范围; (Ⅲ)证明:.
已知椭圆的中心在坐标原点,焦点在轴上,椭圆右焦点,且 (1)求椭圆的标准方程; (2)若直线:与椭圆相交于,两点(都不是顶点),且以为直径 的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
如图,圆:. (Ⅰ)若圆与轴相切,求圆的方程; (Ⅱ)已知,圆与轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.