(本小题满分12分)在直角坐标系XOY中,以O为极点,X轴正半轴为极轴建立极坐标系。曲线C的极坐标方程是:,M,N分别是曲线C与X、Y轴的交点。(1)写出C的直角坐标系方程。并求M,N的极坐标。(2)设MN的中点为P,求直线OP的极坐标方程。
某高校在2011年的自主招生考试成绩 中随机抽取100名学生的笔试成绩,按成绩 分组:第1组[75,80),第2组[80,85), 第3组[85,90),第4组[90,95),第5组 [95,100]得到的频率分布直方图如图所示. (Ⅰ)分别求第3,4,5组的频率; (Ⅱ)若该校决定在笔试成绩高的第3,4,5组 中用分层抽样抽取6名学生进入第二轮面 试,求第3,4,5组每组各抽取多少名学生进入第二轮面试? (Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率.
已知四棱锥的底面是菱形.,为的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面平面.
在△中,角,,的对边分别为,,.,. (Ⅰ)求证:; (Ⅱ)若△的面积,求的值.
已知定义在R上的函数和数列,当时,,其中均为非零常数. (Ⅰ)若数列是等差数列,求的值; (Ⅱ)令,求数列的通项公式; (Ⅲ)若数列为等比数列,求函数的解析式.
已知椭圆经过点,离心率为,动点 (Ⅰ)求椭圆的标准方程; (Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程; (Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.