某学校有男教师150名,女教师100人,按照分层抽样的方法抽出5人进行一项问卷调查。(I)求某老师被抽到的概率及5人中的男、女教师的人数;(II)若从这5人中选出两人进行某项支教活动,则抽出的两人中恰有一名女教师的概率。
(本小题满分12分)为应对国际金融危机对企业带来的不良影响,2009年某企业实行裁员增效,已知现有员工人,每人每年可创纯利润1万元.据评估,在生产条件不变的条件下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给下岗工人0.4万元生活费,并且企业正常运行所需人数不得少于现有员工的,设该企业裁员人后纯收益为万元. (Ⅰ)写出关于的函数关系式,并指出的取值范围; (Ⅱ)当140<≤280时,问企业裁员多少人,才能获得最大的经济效益?(注:在保证能获得最大经济效益的情况下,能少裁员,应尽量少裁)
(本小题满分12分)如图,在直三棱柱中,AB=1,AC=2,,D,E分别是和的中点. (Ⅰ)证明:DE∥平面ABC;(Ⅱ)求直线DE与平面所成的角.
(本小题满分12分) 设甲、乙两套试验方案在一次试验中成功的概率均为,且这两套试验方案中至少有一套试验成功的概率为0.51,假设这两套试验方案在试验过程中,相互之间没有影响.设试验成功的方案的个数. (Ⅰ)求的值; (Ⅱ)求的数学期望与方差.
(本小题满分10分)已知A,B,C是的内角,分别是其对边长,向量. (Ⅰ)求角A的大小; (Ⅱ)若,求的长.
(本小题满分12分)已知椭圆C的中心在原点、焦点在轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线:与椭圆交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线过定点,并求出定点的坐标.