已知向量,,其中.函数在处取最小值.(Ⅰ)求的值;(Ⅱ)设,,为的三个内角,若,,求.
、是椭圆的左、右焦点,是椭圆的右准线,点,过点的直线交椭圆于、两点.(1)当时,求的面积;(2)当时,求的大小;(3)求的最大值.
(本小题满分12分)如图,已知直三棱柱ABC—A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点. (Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D; (Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.
有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查.某中学A,B两个班各被随机抽取5名学生接受问卷调查,A班5名学生得分为:5、8、9、9、9;B班5名学生得分为:6,7,8,9,10.(1)请你估计A,B两个班中哪个班的问卷得分要稳定一些;(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率.
(本小题满分12分)已知函数,且给定条件.⑴求的最大值及最小值;⑵若又给条件,且是的充分条件,求实数的取值范围。
已知是定义在上的函数,其图象与轴交于三点,若点的坐标为且在和上有相同的单调性,在和上有相反的单调性.(1)求的值;(2)在函数的图象上是否存在一点,使得在点的切线斜率为?若存在,求出点的坐标;若不存在,说明理由.