(本小题满分12分)已知定义在R上的单调函数,存在实数,使得对于任意实数,总有恒成立。(Ⅰ)求的值;(Ⅱ)若,且对任意,有,求{an}的通项公式;(Ⅲ)若数列{bn}满足,将数列{bn}的项重新组合成新数列,具体法则如下:,……,求证:。
已知等差数列的公差,它的前项和为,若,且成等比数列.(1) 求数列的通项公式;(2)设数列的前项和为,求证:.
如图,已知三棱锥的侧棱两两垂直,且,,是的中点.(1)求点到面的距离;(2)求二面角的正弦值.
某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1、到各社区宣传慰问,倡导文明新风;2、到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:
(1) 分层抽样方法在做义工的志愿者中随机抽取6名,年龄大于40岁的应该抽取几名? (2) 上述抽取的6名志愿者中任取2名,求选到的志愿者年龄大于40岁的人数的数学期望.
已知函数.(1)求的最大值和最小正周期;(2)若,是第二象限的角,求.
已知为函数图象上一点,O为坐标原点,记直线的斜率. (1)若函数在区间上存在极值,求实数m的取值范围; (2)当 时,不等式恒成立,求实数的取值范围; (3)求证:.