一个箱子中装有大小相同的1个红球,2个白球,3个黑球.现从箱子中一次性摸出3个球,每个球是否被摸出是等可能的. (I)求至少摸出一个白球的概率; (Ⅱ)用表示摸出的黑球数,写出的分布列并求的数学期望.
已知双曲线C:的两个焦点为,点P是双曲线C上的一点,,且. (1)求双曲线的离心率; (2)过点P作直线分别与双曲线的两渐近线相交于两点,若,,求双曲线C的方程.
已知是双曲线的左,右焦点,点是双曲线右支上的一个动点,且的最小值为,双曲线的一条渐近线方程为. 求双曲线的方程;
已知椭圆和双曲线有公共的焦点,(1)求双曲线的渐近线方程(2)直线过焦点且垂直于x轴,若直线与双曲线的渐近线围成的三角形的面积为,求双曲线的方程
已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,求此双曲线的离心率e的最大值.
已知双曲线C与双曲线-=1有公共焦点,且过点(3,2).求双曲线C的方程.