(本小题满分12分)椭圆与直线相交于、两点,且(为坐标原点).(Ⅰ)求证:等于定值;(Ⅱ)当椭圆的离心率时,求椭圆长轴长的取值范围.
已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性,并证明.
已知集合,.(1)存在,使得,求的取值范围;(2)若,求的取值范围.
(1)设,求的值;(2)已知,且,求的值.
已知函数,设曲线在与轴交点处的切线为,为的导函数,满足.(1)求;(2)设,,求函数在上的最大值;(3)设,若对于一切,不等式恒成立,求实数的取值范围.
设是同时符合以下性质的函数组成的集合:①,都有;②在上是减函数.(1)判断函数和()是否属于集合,并简要说明理由;(2)把(1)中你认为是集合中的一个函数记为,若不等式对任意的总成立,求实数的取值范围.