(本小题满分16分)设函数()的图象关于原点对称,且时,取极小值 ,①求的值; ②当时,图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论。③若,求证:。
在数列中,,且成等差数列,成等比数列。(1)求及,由此猜测的通项公式,并证明你的结论;(2)证明:。
某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,决出胜负即停止比赛。按以往的比赛经验,每局比赛中,甲胜乙的概率为。(1)求比赛三局甲获胜的概率;(2)求甲获胜的概率;(3)设比赛的局数为X,求X的分布列和数学期望。
将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷一次,规定“正方体向上的面上的数字为a,正四面体的三个侧面上的数字之和为b”。设复数。(1)若集合{为纯虚数},用列举法表示集合A;(2)求事件“复数在复平面内对应的点(a,b)满足”的概率。
已知,求(请写出最后结果):(1);(2);(3)。
已知复数。(1)求;(2)求的最大值。