平面上有四点A、B、Q、P,其中A、B为定点,且, P、Q为动点,满足,⊿APB和⊿PQB的面积分别为。(1)求,求 (2) 求的最大值
已知函数(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.
某园林公司计划在一块为圆心,(为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.(1)设, 用表示弓形的面积;(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的(参考公式:扇形面积公式,表示扇形的弧长)
如图, 内接于⊙, 是⊙的直径, 是过点的直线, 且. (Ⅰ) 求证: 是⊙的切线;(Ⅱ)如果弦交于点, ,, , 求.
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出,并猜测的表达式;(2)求证:
在平面直角坐标系xOy中,直线l的参数方程为 它与曲线C:交于A、B两点。(1)求|AB|的长(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离。