(本小题满分14分)设直线(其中,为整数)与椭圆交于不同两点,,与双曲线交于不同两点,,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
已知命题:“不等式对任意恒成立”,命题:“方程表示焦点在x轴上的椭圆”,若为真命题,为真,求实数的取值范围.
已知双曲线的两条渐近线与抛物线的准线分别交于A, B两点, O为坐标原点.若双曲线的离心率为2,△AOB的面积为. (1)求抛物线的方程; (2)过点的直线与抛物线交于不同的两点,若在轴上存在一点使得是等边三角形,求的值.
若函数f(x)=ax2+2x-ln x在x=1处取得极值. (1)求a的值; (2)求函数f(x)的单调区间及极值.
在平面直角坐标系中,已知圆:和点,过点的直线交圆于两点. (1)若,求直线的方程; (2)设弦的中点为,求点的轨迹方程.
已知一几何体如图所示,正方形和梯形所在平面互相垂直,,,,,. (Ⅰ)求证:平面; (Ⅱ)求该几何体的体积.