(本小题满分12分)设函数,其中向量.(1)求函数的最小正周期与单调递减区间;(2)在△中,分别是角的对边,已知,△的面积为,求△外接圆半径.
(本小题满分16分)己知函数 (1)若 ,求函数 的单调递减区间; (2)若关于x的不等式 恒成立,求整数 a的最小值: (3)若 ,正实数 满足 ,证明:
已知数列{}中,,且对任意正整数都成立,数列{}的前n项和为Sn。 (1)若,且,求a; (2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由; (3)若。
(本小题满分16分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点. (1)求椭圆的标准方程; (2)过点作垂直于轴的直线,设直线与定直线交于点,试探索当变化时,直线是否过定点?
(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2). (1)求关于的函数关系式; (2)求的最大值.
如图,在多面体中,四边形是菱形,相交于点,,,平面平面,,点为的中点. (1)求证:直线平面; (2)求证:直线平面.