(本小题满分12分)已知函数(1)求函数的最小正周期及单调递增区间;(2)若关于x的方程内有实数解,求实数m的取值范围。
某单位为绿化环境,移栽了甲、乙两种大树各2株。设甲、乙两种大树移栽的成活率分别为 5 6 和 4 5 ,且各株大树是否成活互不影响。求移栽的4株大树中: (Ⅰ)至少有1株成活的概率; (Ⅱ)两种大树各成活1株的概率。
(本小题满分12分)已知定义在上的两个函数的图象在点处的切线倾斜角的大小为(1)求的解析式;(2)试求实数k的最大值,使得对任意恒成立;(3)若,求证:
(本小题满分13分)重庆、成都两个现代化城市之间有7条网线并联,这7条网线能通过的信息量分别为1,1,2,2,2,3,3(信息流量单位),现从中任选三条网线,设可通过的信息量为。若可通过的信息量≥6,则可保证信息通畅。(1)求线路信息通畅的概率;(2)求线路可通过的信息量的分布列和数学期望。网
(本小题满分13分)如图,四面体ABCD中,O是BD的中点, ABD和BCD均为等边三角形,AB=2,AC=。 (1)求证:AO⊥平面BCD;(2)求二面角A—BC—D的大小; (3)求O点到平面ACD的距离。
(本小题满分12分)设数列的通项公式为. 数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值.(1)若,求;(2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.