(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)已知函数 (1)判断并证明在上的单调性;(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;(3)若在上恒成立 , 求的取值范围.
已知为坐标原点,为椭圆在轴正半轴上的焦点,过且斜率为的直线与交与、两点,点满足(Ⅰ)证明:点在上;(Ⅱ)设点关于点的对称点为,证明:、、、四点在同一圆上。
已知函数(Ⅰ)证明:曲线(Ⅱ)若求的取值范围。
如图,是以为直径的上一点,于点,过点作的切线,与的延长线相交于点是的中点,连结并延长与相交于点,延长与的延长线相交于点.(1)求证:;(2)求证:是的切线;(3)若,且的半径长为,求和的长度.
已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.求证:(1)△ABC≌△DCB (2)DE·DC=AE·BD.
如图:是的两条切线,是切点,是上两点,如果,试求的度数.