设计如图所示一水渠,它的横截面曲线是抛物线形,宽2m,渠深为1.5m,水面EF距AB为0.5m. (1)求截面图中水面宽度;(2)由于情况有变,现要将此水渠改造为横截面是等腰梯形,要求渠深不变,不准往回填土,只准挖土,试求截面梯形的下边长为多大时,才能使所挖的土最少?
已知抛物线:,(1)直线与抛物线有且仅有一个公共点,求实数的值;(2)定点,P为抛物线上任意一点,求线段长的最小值
已知双曲线的中心在坐标原点,焦点在轴上,实轴长是虚轴长的2倍,且过点, 求双曲线的标准方程及离心率.
已知抛物线的方程为,点在抛物线上.(1)求抛物线的方程;(2)过点作直线交抛物线于不同于的两点,若直线分别交直线于两点,求最小时直线的方程.
已知二次函数满足,且关于的方程 的两个实数根分别在区间、内.(1)求实数的取值范围;(2)若函数在区间上具有单调性,求实数的取值范围.
(本小题满分15分)在四棱锥中, ,,点是线段上的一点,且,.(1)证明:面面; (2)求直线与平面所成角的正弦值.