盒中装有大小相等的球10个,编号分别为0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一.规定一个随机变量,并求其概率分布列.
解关于实数的不等式:。
已知为的三个内角的对边,如果成等差数列,,的面积为,求。
已知无穷数列中,是以10为首项,以-2为公差的等差数列;是以为首项,以为公比的等比数列,并对任意,均有成立.(Ⅰ)当时,求; (Ⅱ)若,试求的值;(Ⅲ)判断是否存在,使成立,若存在,求出的值;若不存在,请说明理由.
已知椭圆的两个焦点是与,点是椭圆外的动点,满足.点是线段与该椭圆的交点,点在线段上,并且满足.(Ⅰ)设为点的横坐标,证明;(Ⅱ)求点的轨迹的方程;(Ⅲ)试问:在点的轨迹上,是否存在点,使的面积为?若存在,求的正切值;若不存在,请说明理由.
已知函数在上为增函数,且,.(Ⅰ)求的值;(Ⅱ)若在上为单调函数,求的取值范围;(Ⅲ)设,若在上至少存在一个,使得成立,求的取值范围.