已知数列 a n 和 b n 满足: a 1 = λ , a n + 1 = 2 3 a n + n - 4 , b n = ( - 1 ) n ( a n - 3 n + 21 ) ,其中 λ 为实数, n 为正整数。
(Ⅰ)证明:对任意的实数 λ ,数列 a n 不是等比数列;
(Ⅱ)设 S n 为数列 b n 的前 n 项和,是否存在实数 λ ,使得对任意正整数 n ,都有 S n > - 12 ?若存在,求 λ 的取值范围;若不存在,说明理由.
已知函数(e为自然对数的底数). (1)求函数的单调增区间; (2)设关于x的不等式≥的解集为M,且集合,求实数t的取值范围.
已知是内任意一点,连结并延长交对边于,,,则.这是平面几何的一个命题,其证明常常采用“面积法”: . 运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明.
在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某市一个投保人能活到75岁的概率为0.60,试问: (1)若有3个投保人, 求能活到75岁的投保人数的分布列; (2)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)
在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个。现从盒子中每次任意取出一个球,若取出的是蓝球则结束,若取出的不是蓝球则将其放回箱中,并继续从箱中任意取出一个球,但取球次数最多不超过3次。求: (1)取两次就结束的概率; (2)正好取到2个白球的概率.
现有5名男生和3名女生. (1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法? (2)若从中选5人,且要求女生只有2名, 站成一排,共有多少种不同的排法?