已知数列 a n 和 b n 满足: a 1 = λ , a n + 1 = 2 3 a n + n - 4 , b n = ( - 1 ) n ( a n - 3 n + 21 ) ,其中 λ 为实数, n 为正整数。
(Ⅰ)证明:对任意的实数 λ ,数列 a n 不是等比数列;
(Ⅱ)设 S n 为数列 b n 的前 n 项和,是否存在实数 λ ,使得对任意正整数 n ,都有 S n > - 12 ?若存在,求 λ 的取值范围;若不存在,说明理由.
设是定义在R上的奇函数,且对任意a、b,当时,都有.(1)若,试比较与的大小关系;(2)若对任意恒成立,求实数k的取值范围.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量。(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润总收益总成本)
已知函数.⑴判断函数的奇偶性,并证明;⑵利用函数单调性的定义证明:是其定义域上的增函数.
已知全集,集合,,(1)求、;(2)若集合是集合A的子集,求实数k的取值范围.
(本小题满分14分)(1)计算的值. (2)计算的值.