已知:如图,△ABC中,AD平分∠BAC,AD的垂直平分线交AB于点E,交AD于点H,交AC于点G,交BC的延长线于点F,求证:DF2=CF•BF.
解关于的不等式,其中.
已知函数是定义在上的奇函数,当时,(为常数)。(1)求函数的解析式;(2)当时,求在上的最小值,及取得最小值时的,并猜想在上的单调递增区间(不必证明);(3)当时,证明:函数的图象上至少有一个点落在直线上。
设函数f(x)的定义域D关于原点对称,0∈D,且存在常数a>0,使f(a)=1,又,(1)写出f(x)的一个函数解析式,并说明其符合题设条件;(2)判断并证明函数f(x)的奇偶性;(3)若存在正常数T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)对于x∈D都成立,则都称f(x)是周期函数,T为周期;试问f(x)是不是周期函数?若是,则求出它的一个周期T;若不是,则说明理由。
已知函数f(x)=(|x|-b)2+c,函数g(x)=x+m, (1)当b=2,m=-4时,f(x)g(x)恒成立,求实数c的取值范围; (2)当c=-3,m=-2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.
设定义在上的函数满足下面三个条件:①对于任意正实数、,都有; ②;③当时,总有.(1)求的值;(2)求证:上是减函数.