如图所示,四棱锥中,底面是矩形,平面,分别是的中点,.(1)求证:平面;(2)求证:平面⊥平面.
双曲线E经过点A(4,6),对称轴为坐标轴,焦点F1,F2在X轴上,离心率e=2。 (1)求双曲线E的方程; (2)求∠F1AF2的角平分线所在直线的方程.
定义在R上的函数f(x)满足f(x+2)=-f(x),且当x∈[-1,1]时,f(x)=x3. (1)求f(x)在[1,5]上的表达式; (2)若A={x| f(x)>a, x∈R},且A,求实数a的取值范围.
为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
(1)求x,y; (2)若从高校A,C 抽取的人中选2人作专题发言,求这两人都来自高校C的概率.
记函数f(x)=的定义域为A,的定义域为B. (1)求集合A; (2)求集合B.
(本小题满分14分) 下表给出的是由n×n(n≥3,n∈N*)个正数排成的n行n列数表,表示第i行第j列的数,表中第一列的数从上到下依次成等差数列,其公差为d ,表中各行中每一行的数从左到右依次都成等比数列,且所有公比相等,公比为,若已知
(1)求的值; (2)求用表示的代数式; (3)设表中对角线上的数,,,……,组成一列数列,设Tn=+++……+求使不等式成立的最小正整数n.