某商店投入38万元经销某种纪念品,经销时间共60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第天的利润(单位:万元,),记第天的利润率,例如求的值;求第天的利润率;该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率。
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (1)求圆C的极坐标方程; (2)直线的极坐标方程是,射线与圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
(本小题满分10分)选修4—1:几何证明选讲 如图所示,为圆的切线, 为切点,,的角平分线与和圆分别交于点和. (1)求证 (2)求的值.
(本小题满分12分)设函数. (1)若函数在处有极值,求函数的最大值; (2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; ②证明:不等式
(本小题满分12分)已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足,(若△ABC的顶点坐标为,则该三角形的重心坐标为. (1)求点C的轨迹E的方程; (2)若斜率为k的直线l与(1)中的曲线E交于不同的两点P、Q,且,试求斜率k的取值范围.
(本小题满分12分)去年2月29日,我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.惠州市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,由此得到样本的空气质量指数频率分布直方图,如图. (1)求a的值; (2)根据样本数据,试估计这一年度的空气质量指数的平均值; (3)如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.