(本小题满分12分)设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。(Ⅰ)求f(x)的解析式:(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。
(本小题满分12分) 函数,(1)若,解不等式; (2)如果,,求a的取值范围
(本小题满分12分)圆和圆的极坐标方程分别为.(1)把圆和圆的极坐标方程化为直角坐标方程;(2)求经过圆,圆两个交点的直线的直角坐标方程.
(本小题满分12分)用数学归纳法证明:
(本小题满分12分). 一物体沿直线以速度(的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?
函数(1)若f(-1)=0,并对恒有,求的表达式;(2)在(1)的条件下,对,=—kx是单调函数,求k的范围。