已知:,试比较M,N的大小:你能得出一个一般结论吗?
如图,在四棱锥中,侧棱⊥底面,,,,,是棱的中点.(1)求证:面;(2)设点是线段上的一点,且在方向上的射影为,记与面所成的角为,问:为何值时,取最大值?
在三角形中,,,的对边分别为,,,且(1)求;(2)若,求的取值范围.
设函数,(1)若函数在处与直线相切;①求实数,的值;②求函数上的最大值;(2)当时,若不等式对所有的,都成立,求实数的取值范围.
已知函数的定义域,若在上为增函数,则称为“一阶比增函数”;若在上为增函数,则称为“二阶比增函数”。把所有由“一阶比增函数”组成的集合记为,把所有由“二阶比增函数”组成的集合记为.(1)已知函数,若且,求实数的取值范围;(2)已知,且存在常数,使得对任意的,都有,求的最小值.
已知椭圆的离心率为,其左,右焦点分别为,点是坐标平面内一点,且,,其中为坐标原点.(1)求椭圆的方程;(2)过点,且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过这个定点?若存在,求出点的坐标;若不存在,请说明理由.