定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。
(本小题满分12分)f(x)=.,其中向量=(m,cos2x),=(1+sin2x,1),,且函数的图象经过点.(Ⅰ)求实数的值.(Ⅱ)求函数的最小值及此时值的集合.
(本小题满分12分) 已知等比数列中,,公比,为的前项和. (1)求和Sn (2)设,求数列的通项公式.
.选修4-5:不等式选讲已知a,b,c∈R+,求证:(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;(2)
选修4-4:极坐标与参数方程在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2交点的极坐标;(Ⅱ)求圆C1与C2的公共弦的参数方程.
选修4-1:几何证明选讲如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.