已知函数(1)若函数在定义域内单调递增,求的取值范围;(2)若且关于x的方程在上恰有两个不相等的实数根,求实数的取值范围;(3)设各项为正的数列满足:求证:
已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,,曲线的参数方程为.点是曲线上两点,点的极坐标分别为.(1)写出曲线的普通方程和极坐标方程;(2)求的值.
如图所示,为圆的切线,为切点,,的角平分线与和圆分别交于点和.(1)求证(2)求的值.
已知抛物线的焦点为,点为抛物线上的一点,其纵坐标为,.(1)求抛物线的方程;(2)设为抛物线上不同于的两点,且,过两点分别作抛物线的切线,记两切线的交点为,求的最小值.
已知函数(1)若是的极值点,求的极大值;(2)求的范围,使得恒成立.
如图1,在直角梯形中,,,,点为中点.将沿折起,使平面平面,得到几何体,如图2所示.(1)在上找一点,使平面;(2)求点到平面的距离.