(本小题满分12分)如图,中心在原点O的椭圆的右焦点为F(3,0), 右准线l的方程为:x = 12。 (1)求椭圆的方程;(4分) (2)在椭圆上任取三个不同点,使, 证明: 为定值,并求此定值。(8分)
(本小题满分14分) 在数列和中,已知,其中且。 (I)若,求数列的前n项和; (II)证明:当时,数列中的任意三项都不能构成等比数列; (III)设集合,试问在区间[1,a]上是否存在实数b使得,若存在,求出b的一切可能的取值及相应的集合C;若不存在,说明理由。
(本小题满分14分)椭圆短轴的左右两个端点分别为A,B,直线与x轴、y轴分别交于两点E,F,交椭圆于两点C,D。 (I)若,求直线的方程; (II)设直线AD,CB的斜率分别为,若,求k的值。
(本小题满分13分) 已知,函数,记曲线在点处切线为与x轴的交点是,O为坐标原点。 (I)证明: (II)若对于任意的,都有成立,求a的取值范围。
(本小题满分13分) 如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。 (I)求证:C1D//平面ABB1A1; (II)求直线BD1与平面A1C1D所成角的正弦值; (Ⅲ)求二面角D—A1C1—A的余弦值。
(本小题满分13分) 一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、5,现从盒子中随机抽取卡片。 (I)若从盒子中有放回地抽取3次卡片,每次抽取一张,求恰有两次取到的卡片上数字为偶数的概率; (II)若从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到一张记有偶数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望。