对于数列 { u n } ,若存在常数 M > 0 ,对任意的 n ∈ N + ,恒有 u n + 1 - u n + u n - u n - 1 + . . . + u 2 - u 1 ≤ M ,则称数列 { u n } 为 B - 数列. (Ⅰ)首项为1,公比为 - 1 2 的等比数列是否为 B - 数列?请说明理由; (Ⅱ)设 S n 是数列 { x n } 的前 n 项和,给出下列两组判断: A组:①数列 { x n } 是 B - 数列;②数列 { x n } 不是 B - 数列; B组:③数列 { S n } 是 B - 数列;④数列 { S n } 不是 B - 数列. 请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。判断所给命题的真假,并证明你的结论; (Ⅲ)若数列 { a n } 是 B - 数列,证明:数列 { a n 2 } 也是 B - 数列.
已知p: ,q: ,若是的必要不 充分条件,求实数m的取值范围。
(本小题满分12分)设是定义在(-∞,+∞)上的函数,对一切均 有,且当时,,求当时,的解析式。
(本小题满分12分)已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}。 (1) 若A∩B=Φ,求a的取值范围; (2) 若A∪B=B,求a的取值范围。
已知. (1)当,且有最小值2时,求的值; (2)当时,有恒成立,求实数的取值范围.
已知函数 (1)求函数的定义域; (2)求函数的零点; (3)若函数的最小值为-4,求a的值。