对于数列 { u n } ,若存在常数 M > 0 ,对任意的 n ∈ N + ,恒有 u n + 1 - u n + u n - u n - 1 + . . . + u 2 - u 1 ≤ M ,则称数列 { u n } 为 B - 数列. (Ⅰ)首项为1,公比为 - 1 2 的等比数列是否为 B - 数列?请说明理由; (Ⅱ)设 S n 是数列 { x n } 的前 n 项和,给出下列两组判断: A组:①数列 { x n } 是 B - 数列;②数列 { x n } 不是 B - 数列; B组:③数列 { S n } 是 B - 数列;④数列 { S n } 不是 B - 数列. 请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。判断所给命题的真假,并证明你的结论; (Ⅲ)若数列 { a n } 是 B - 数列,证明:数列 { a n 2 } 也是 B - 数列.
已知函数f(x)=sin2xsinφ+cos2xcosφ-sin(0<φ<π),其图象过点. (1)求φ的值; (2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在上的最大值和最小值.
(1)求不等式的解集; (2)已知,求证:.
在直角坐标系中,直线的参数方程为(t为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为 (1)求直线及圆的直角坐标方程; (2)设圆与直线交于点.若点的坐标为(3,),求.
如图,AB是的一条切线,切点为B,直线ADE, CFD,CGE都是的割线,已知AC=AB. (1)求证:FG//AC; (2)若CG=1,CD=4,求的值.
已知函数在处取得极值. (1)求的值; (2)求函数在上的最小值; (3)求证:对任意,都有.