如图,在直四棱柱 A B C D - A 1 B 1 C 1 D 1 ,底面 A B C D 为等腰梯形, A B ∥ C D , A B = 4 , B C = C D = 2 , A A 1 = 2 , E , E 1 分别是棱 A D , A A 1 的中点。
(1)设 F 是棱 A B 的中点,证明:直线 E F 1 ∥ 平面 F C C 2 ; (2)证明:平面 D 1 A C ⊥平面 B B 1 C 1 C .
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证:(Ⅰ); (Ⅱ).
已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.(Ⅰ)求,,,的值;(Ⅱ)若≥-2时,≤,求的取值范围.
设为实数,函数(Ⅰ)求的单调区间与极值;(Ⅱ)求证:当且时,
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
设函数(1)设,,证明:在区间内存在唯一的零点;(2) 设,若对任意,有,求的取值范围;(3)在(1)的条件下,设是在内的零点,判断数列的增减性.