如图,在直四棱柱 A B C D - A 1 B 1 C 1 D 1 ,底面 A B C D 为等腰梯形, A B ∥ C D , A B = 4 , B C = C D = 2 , A A 1 = 2 , E , E 1 分别是棱 A D , A A 1 的中点。
(1)设 F 是棱 A B 的中点,证明:直线 E F 1 ∥ 平面 F C C 2 ; (2)证明:平面 D 1 A C ⊥平面 B B 1 C 1 C .
己知函数 (1)若,求函数 的单调递减区间; (2)若关于x的不等式恒成立,求整数 a的最小值: (3)若,正实数 满足 ,证明:
已知函数,函数. (1)当时,函数的图象与函数的图象有公共点,求实数的最大值; (2)当时,试判断函数的图象与函数的图象的公共点的个数; (3)函数的图象能否恒在函数的图象的上方?若能,求出的取值范围;若不能,请说明理由.
如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧. (1)试确定A,和的值; (2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
已知函数,(其中、为参数) (1)当时,证明:不是奇函数; (2)如果是奇函数,求实数、的值; (3)已知,在(2)的条件下,求不等式的解集.
已知函数的最小正周期为. (1)求函数的对称轴方程; (2)设,,求的值.