如图,在直四棱柱 A B C D - A 1 B 1 C 1 D 1 ,底面 A B C D 为等腰梯形, A B ∥ C D , A B = 4 , B C = C D = 2 , A A 1 = 2 , E , E 1 分别是棱 A D , A A 1 的中点。
(1)设 F 是棱 A B 的中点,证明:直线 E F 1 ∥ 平面 F C C 2 ; (2)证明:平面 D 1 A C ⊥平面 B B 1 C 1 C .
(满分12分)设全集合求.
已知直线:,直线:,其中,. (1)求直线的概率; (2)求直线与的交点位于第一象限的概率.
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示. (1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差 (3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
已知命题若非是的充分不必要条件,求的取值范围。
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点. (1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标; (2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程; (3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.