已知函数,是否存在实数a、b、c,使同时满足下列三个条件:(1)定义域为R的奇函数;(2)在上是增函数;(3)最大值是1.若存在,求出a、b、c;若不存在,说明理由.
已知函数图象的一部分如图所示.(1)求函数的解析式;(2)当时,求函数的最大值与最小值及相应的的值.
的三个内角所对的边分别为,向量,,且.(1)求的大小;(2)现在给出下列三个条件:①;②;③,试从中再选择两个条件以确定,求出所确定的的面积.
受日月引力影响,海水会发生涨退潮现象.通常情况下,船在涨潮时驶进港口,退潮时离开港口.某港口在某季节每天港口水位的深度(米)是时间(,单位:小时,表示0:00—零时)的函数,其函数关系式为.已知一天中该港口水位的深度变化有如下规律:出现相邻两次最高水位的深度的时间差为12小时,最高水位的深度为12米,最低水位的深度为6米,每天13:00时港口水位的深度恰为10.5米.(1)试求函数的表达式;(2)某货船的吃水深度(船底与水面的距离)为7米,安全条例规定船舶航行时船底与海底的距离不小于3.5米是安全的,问该船在当天的什么时间段能够安全进港?若该船欲于当天安全离港,则它最迟应在当天几点以前离开港口?
(本小题满分12分)定义在区间上的函数的图象关于直线对称,当时函数图象如图所示.(1)求函数在的表达式;(2)求方程的解;(3)是否存在常数的值,使得在上恒成立;若存在,求出的取值范围;若不存在,请说明理由.
已知函数).(1)求函数的最小正周期; (2)若,求的值.