如图,椭圆C: 的焦点为F1(0,c)、F2(0,一c)(c>0),抛物线的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A、B两点,且 (I)求证:切线l的斜率为定值; (Ⅱ)若抛物线P与直线l及y轴围成的图形面积为,求抛物线P的方程; (III)当时,求椭圆离心率e的取值范围。
已知函数(). (1)若为的极值点,求实数的值; (2)若在上不是单调函数,求实数的取值范围; (3)当时,方程有实根,求实数的最大值.
已知抛物线:和点,若抛物线上存在不同两点、满足. (1)求实数的取值范围; (2)当时,抛物线上是否存在异于、的点,使得经过、、三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.
如图,四棱锥中,平面,与底面所成的角为,底面为直角梯形,, (1)求证:平面平面; (2)在线段上是否存在点,使与平面所成的角为?若存在,确定点的位置;若不存在,说明理由.
已知函数f(x)=sin2xsinφ+cos2xcosφ-sin(0<φ<π),其图象过点. (1)求φ的值; (2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在上的最大值和最小值.
(1)求不等式的解集; (2)已知,求证:.